A NEW VARIETY OF ORTHORETIOLITES HAMI WHITTINGTON

by D. SKEVINGTON

Abstract

A variety of Orthoretiolites hami Whittington is recorded from two levels in the Viola limestone of Oklahoma. The varietal distinction is based on the more robust nature of the clathria and the presence of a structureless periderm. Early growth stages recovered illustrate the initial development of the species O. hami whilst adult stages are represented in several rhabdosomes. It is concluded that, in spite of its mode of development, the genus Orthoretiolites could be most conveniently placed in the family Retiolitidae.

INTRODUCTION

Numerous specimens of a variety of O. hami were recovered from fragments of Ordovician Viola limestone collected by Dr. P. K. Sutherland from a horizon 50 feet above the base in the Criner Hills at Rock Crossing, 6 miles south-west of Ardmore, Oklahoma. These include growth stages both earlier and later than those which Whittington obtained of his species, O. hami; though differing in certain structural features, to be described later, the actual mode of development of the two forms is identical. The purpose of this note is to clarify one or two points, concerning early development, which Whittington had, of necessity, to leave undecided; to justify the creation of a variety of the species O. hami; and to comment on the affinities of the genus Orthoretiolites.

The fragments of limestone were left to decalcify in strong HCl for about three weeks; they were then washed and transferred to HF for from four to five hours, by which time the limestone was usually completely broken down and the graptolites set free; the specimens ranged from immature siculae to seemingly adult rhabdosomes. The early growth stages were cleared in a solution of concentrated nitric acid and potassium chlorate, dehydrated in alcohol, and mounted in euparal. No attempt was made to clear the larger specimens, which were also mounted in euparal.

The author is indebted to Professor O. M. B. Bulman for his supervision throughout the preparation of this paper. Thanks are due also to Dr. P. K. Sutherland who collected the material. The originals of all figured specimens are in the Sedgwick Museum, Cambridge, and numbered A24581-600.

Orthoretiolites hami Whittington var. robustus nov.

Plates 34 and 35
1934 Lasiograptus (Thysanograptus) eucharis Ruedemann and Decker (non Hall), pp. 324-6, pl. 43, figs. 18-20.
1945 (?) Lasiograptus (Thysanograptus) eucharis Decker and Coleman, Bull. Amer. Ass. Petrol. Geol. 29, p. 457, pl. 1, fig. 1.
1947 Lasiograptus (Thysanograptus) eucharis Ruedemann, pl. 82, figs. 23-26.
1950 (non) Lasiograptus (Thysanograptus) eucharis Decker. Bull. Amer. Ass. Petrol. Geol. 34, pp. 1904, 1908-9, pl. 1, fig. 19.

Diagnosis. Rhabdosome 1 mm . in width at first thecal pair (excluding apertural spines), increasing to 2.2 mm . at fifth pair, thereafter increase slight. Greatest length preserved
7.7 mm . Sicula and proximal parts of th 1^{1}, th 1^{2}, and th 2^{1} provided with complete periderm, remainder of rhabdosome represented by clathria with covering of structureless periderm (presumably cortical tissue alone). Virgula straight, central, and confined to obverse wall; reverse wall has zigzag 'virgula'. Paired lateral spines developed infrequently on true virgula. Development non-septate diplograptid, thecae alternating and of orthograptid type with straight ventral walls and provided with long, single, apertural spines. Thecae numbering 15 in 10 mm . at proximal end; probably about 12 in 10 mm . distally.

Description. In a comparison of Whittington's holotype (Specimen MCZ 511-see Whittington 1954, p. 615, fig. 4) with the specimens collected from the 50 -foot level in the limestone, two differences are at once apparent: (a) the stouter clathrial lists and more pronounced lateral spines of the latter; and (b) the presence, in some of the latter, of a periderm throughout the rhabdosome of the larger growth stages and adult specimens.

Every specimen of Orthoretiolites collected from the 50 -foot horizon possesses lists which are much stouter than those of Whittington's species. The fact that this feature is shown by even the earliest growth stages which possess lists indicates that it is not developed only with the onset of maturity. The lateral spines are similarly more strongly developed. Furthermore, their arrangement shows a marked tendency towards regularity; thus, a pair of such spines-one obverse and one reverse-is present on the sicula, about one-third of the distance down from the base of the nema (Pl. 34, fig. 3). Both spines are directed outwards approximately normal to the axis of the rhabdosome. The obverse spine is unrelated to the skeletal framework, but the reverse spine, on the other hand, is linked with the rods of the clathria. In specimen A24592 (P1. 34, fig. 3) it passes through the mid-point of the dorsal list of th2 ${ }^{2}$, whilst in specimen A24594 (Pl. 35, fig. 2) it cuts across the junction of the dorsal lists of th2 2^{1} and th2 2^{2} and the parietal list between th 2^{1} and th 3^{1}. Thus, in its initial part, between the sicula and the clathrial lists, the reverse spine functions as an additional, transverse list, strengthening the clathria. A similar pair of spines may be present at the level of the fourth or fifth thecal pairs (Pl. 35, fig. 2). These spines are again obverse and reverse and both originate at the same level on the virgula proper; in consequence, the reverse spine, in its early part, again acts as a transverse list, in this case linking the obverse and reverse walls of the clathria in the mid-line.

In Orthoretiolites hami, continuous periderm is present only in the sicula and the proximal parts of th 1^{1}, th 1^{2}, and th2 ${ }^{1}$, though Whittington (1954) states that shreds of this material are occasionally found in more distal thecae, in the angles between the lists of the clathria. On the other hand, with a single exception (Pl. 34, fig. 2), all the adult and later growth stage specimens from the 50 -foot level-together with examples from a horizon 3 feet above the base at the same locality-show a damaged, though apparently once continuous, periderm throughout (Pl. 34, fig. 3; Pl. 35, figs. 1-4). This periderm is quite structureless and presumably represents only cortical tissue. Several growth stages, younger than Whittington's holotype, show this periderm, which again is therefore not a feature acquired only at a late stage in development.

In spite of the features noted above, the mode of development, the extent of fusellar tissue, and the arrangement of the clathrial lists correspond in the specimens from the two levels. The differences which exist are a matter only of degree and do not merit the erection of a new species. They represent, at the most, a variety of O. hami-an ancestral
form in which the reduction of the skeleton had not progressed so far as in the typical O. hami-for which the name robustus is proposed.

Additional material, collected 3 feet above the base of the limestone, possesses features identical with those of specimens from the 50 -foot horizon and it can be concluded that this material also belongs to the new variety of Whittington's species (Pl .35 , figs. 3, 4).
Development. The prosicula is typically subcylindrical in shape. At its proximal end it merges into the base of the nema and shortly below this point it attains a width which is retained, with little increase, to its distal margin. In the original of text-fig. $1 b$ the prosicula is 0.31 mm . in length and 0.10 mm . in width at the margin; in text-fig. $2 b$ the respective dimensions are 0.31 mm . and 0.11 mm . In one specimen, text-fig. $1 e$, there is, however, a slight contraction towards the apertural margin, the maximum width being at a level about two-thirds of the way down the prosicula. In the original of text-fig. la the prosicula is missing and the 'bifurcating virgula' is attached directly to the metasicula. The longitudinal rods are four or five in number and extend the length of the prosicula; the intervening, short, secondary rods, growing up from the margin, total eight or more.

The slight increase in diameter of the prosicula towards its distal margin is followed by a much more definite increase in the proximal part of the metasicula. The growth lines in this initial part of the metasicula are closely spaced and meet, on both the virgellar and anti-virgellar sides, along a zigzag suture. On the anti-virgellar side, as noted by Whittington, the margins of the chitinous growth bands are straight, but on the virgellar side they bend downwards to a progressively increasing degree as the origin of the virgella is approached, becoming asymptotic to the long axis of the sicula as they pass into the virgella (text-figs, $1 c, d, e$). This latter originates usually between 0.20 and 0.30 mm . below the prosicular margin, but in one specimen this distance is only 0.15 mm . (text-fig. $1 d$). At about the level of the virgella origin there is typically a marked increase in the width of the metasicula; the diameter thus attained remains more or less constant to the aperture.

Variation in the shape of the sicula was a feature commented upon by Whittington and can be verified by a consideration of the accompanying text-figures, the originals of which were preserved in full relief. Despite the variety of shapes possible, however, there is a form typical of the species having a subcylindrical prosicula and showing expansion of the proximal part of the metasicula down to the level of the virgella origin, where a swelling occurs giving an increase in diameter which is more or less retained to the aperture.

In the earliest growth stages of the metasicula, before the appearance of the virgella proper, the position of that feature on the growing edge is marked by a blunt tubercle. In later stages, however, the virgella forms a prominent part of the metasicula and in the fully developed sicula it projects as a spine below the aperture, only slightly less than the length of the metasicula itself; thus, in the original of text-fig. $1 f$, the metasicula measures 0.55 mm . and the virgella extends a further 0.42 mm . beyond the level of the aperture.

explanation of plate 34

Figs. 1-3. Orthoretiolites hami Whittington var. robustus nov. Viola limestone, 50 feet above the base, at Rock Crossing, 6 miles south-west of Ardmore, Criner Hills, Oklahoma. 1, Reverse view, th 1^{1} incomplete, flange representing proximal part of th $1^{2}, \times 86$. A 24590.2 , Obverse view, growth stage with four thecae complete, total absence of structureless periderm, $\times 20$. A24591, 3, Reverse view, growth stage with six thecae complete, note patches of periderm. $/ s$-lateral spine. $\times 20$. A24592.

On the anti-virgellar side of the metasicular aperture are two diverging spines directed outwards and downwards and making an angle of 45° with the axis of the sicula. In fully mature siculae the spines may attain a length of 0.25 mm . The two spines are

TEXT-FIG. 1. Orthoretiolites hami Whittington var. robustus nov. Stages of growth up to the appearance of the initial bud, $\times 35$. a, Malformed immature sicula A24581. b, Prosicula complete, beginning of metasicula and appearance of virgella. A24582. c, Appearance of resorption foramen; specimen slightly damaged. A24583. d, Foramen complete, virgella prominent. A24584. e, Initial bud, development of apertural spines on sicula. A24585. f, Initial bud, sicula complete. A24586.
separated by a section of the apertural margin along which growth has been checked, resulting in an embayment which may extend proximally for as much as 0.11 mm . above the general level of the aperture. In addition, the apertural margin of the sicula commonly exhibits a noticeable thickening.

The foramen, marking the point at which the initial bud-the proximal part of thl ${ }^{1}$ originates, is produced by the resorption of periderm (text-figs. $1 c, d$). It is situated just distally to the virgellar origin, and to the left of that feature. The foramen is formed at or about the stage when the apertural spines are beginning to develop; it lies below the mid-point of the metasicula and typically three-fifths of the distance from the prosicular aperture. The initial bud originates as a hood at the top of the foramen (text-fig. $1 e$). In the very early stages of formation growth is directed outwards from the sicula and downwards towards the sicular aperture; by the time the bud has grown to the level of the lower rim of the foramen the sicular is normally fully developed. The direction of growth of the bud soon changes so that the right-hand edge crosses the virgella to the obverse side of the sicula; the left-hand edge of the bud grows towards the virgella, and may pass on to it, but does not cross it.

At approximately the stage of growth represented by the original of text-fig. $2 a$, growth is checked along the left-hand, or reverse, growing edge of the initial bud-thus producing an embayment which becomes the upper rim of the foramen of $t h 1^{2}$. This latter, therefore, takes the form of a primary notch, as distinct from the resorption foramen of th 1^{1}. Further growth of th 1^{2} is by the addition of periderm to the outer margin of the foramen, producing a flap or flange (text-fig. $2 b$), and this is contemporaneous with the continued development of th 1^{1}. In its earliest stage, therefore, th1 ${ }^{2}$ is elongated parallel to the axis of the sicula, and at the same time its outer margin is extended round the reverse wall of the sicula, and generally towards the anti-virgellar side. When complete, the margin of the foramen is oval in shape. Text-fig. $2 b$ shows an early stage in the development of the flange, and the growth lines of this feature indicate that the direction of growth is downwards (towards the metasicular aperture), across (towards the antivirgellar side of the sicula), and outwards so as to form a sheath-like structure about the sicula. The right-hand, or obverse, wall of the initial bud is unaffected by flange development and continues to grow downwards until the level of the metasicular aperture is reached.

In the original of text-fig. 3 the flange has extended across the metasicula, half-way to the anti-virgellar side, and downwards, partly obscuring the foramen of $t h 1^{2}$. The flange is in contact with the sicula along its upper edge, and with the outer margin of the foramen; the inner margin of this latter is coincident with the virgella. The growing edge of the flange is affected by folding, but it is probable that this is mostly a preservational

EXPLANATION OF PLATE 35

Figs. 1-4. Orthoretiolites hami Whittington var. robustus nov. 1, 2, Viola limestone, 50 feet above the base, at Rock Crossing, 6 miles south-west of Ardmore, Criner Hills, Oklahoma. 1, Obverse view, adult rhabdosome extending to seventh thecal pair, structureless periderm strongly in evidence. \times 10. A24593. $2 a$, Reverse view, damaged adult rhabdosome, note pair of lateral spines ($l s$) developed at fifth thecal pair. $\times 10$, A24594. $2 b$, Obverse view of same. 3, 4, Viola limestone, 3 feet above the base, at Rock Crossing. 3, Part of surface of fragment of Viola limestone. Obverse view with fourteen thecae visible; darker patches within the thecae represent the structureless periderm. $\times 15$. A24599. 4, Ditto. Several specimens crushed together, periderm clearly developed. $\times 15$. A24600.

1

$2 a$

text-figs. 2, 3. Orthoretiolites hami Whittington var. robustus nov. Initial development of th1 ${ }^{2}, \times 35$. $2 a$. Reverse view, appearance of the foramen of $\mathrm{h} 1^{2}$ in the reverse wall of the initial bud. A24587.
$2 b$. Reverse view, appearance of the flange. A24588. 3a. Reverse view, th 1^{1} incomplete, flange representing proximal part of thl ${ }^{2}$. A24589. 3b. Obverse view of same.

